Neutralizing a surface charge on the FMN subdomain increases the activity of neuronal nitric-oxide synthase by enhancing the oxygen reactivity of the enzyme heme-nitric oxide complex.
نویسندگان
چکیده
Nitric-oxide synthases (NOSs) are calmodulin-dependent flavoheme enzymes that oxidize l-Arg to nitric oxide (NO) and l-citrulline. Their catalytic behaviors are complex and are determined by their rates of heme reduction (k(r)), ferric heme-NO dissociation (k(d)), and ferrous heme-NO oxidation (k(ox)). We found that point mutation (E762N) of a conserved residue on the enzyme's FMN subdomain caused the NO synthesis activity to double compared with wild type nNOS. However, in the absence of l-Arg, NADPH oxidation rates suggested that electron flux through the heme was slower in E762N nNOS, and this correlated with the mutant having a 60% slower k(r). During NO synthesis, little heme-NO complex accumulated in the mutant, compared with approximately 50-70% of the wild-type nNOS accumulating as this complex. This suggested that the E762N nNOS is hyperactive because it minimizes buildup of an inactive ferrous heme-NO complex during NO synthesis. Indeed, we found that k(ox) was 2 times faster in the E762N mutant than in wild-type nNOS. The mutational effect on k(ox) was independent of calmodulin. Computer simulation and experimental measures both indicated that the slower k(r) and faster k(ox) of E762N nNOS combine to lower its apparent K(m,O(2)) for NO synthesis by at least 5-fold, which in turn increases its V/K(m) value and enables it to be hyperactive in steady-state NO synthesis. Our work underscores how sensitive nNOS activity is to changes in the k(ox) and reveals a novel means for the FMN module or protein-protein interactions to alter nNOS activity.
منابع مشابه
Surface charge interactions of the FMN module govern catalysis by nitric-oxide synthase.
The FMN module of nitric-oxide synthase (NOS) plays a pivotal role by transferring NADPH-derived electrons to the enzyme heme for use in oxygen activation. The process may involve a swinging mechanism in which the same face of the FMN module accepts and provides electrons during catalysis. Crystal structure shows that this face of the FMN module is electronegative, whereas the complementary int...
متن کاملComparison of inducible nitric oxide synthase activity in pancreatic islets of young and aged rats
Objective(s):Some pathologic situations such as diabetes and metabolic syndrome are associated with alternation in nitric oxide level. Incidence of these condition increases with aging. On the other hand, insulin secretion is modulated by nitric oxide, and nitric oxide synthase (NOS) activity is also altered in diabetes. In this study, modification in the enzyme activity associated with aging a...
متن کاملNitric Oxide Functions; an Emphasis on its Diversity in Infectious Diseases
Nitric oxide is a short-lived mediator, which can be induced in a variety of cell types and produces many physiologic and metabolic changes in target cells. It is important in many biological functions and generated from L-arginine by the enzyme nitric oxide synthase. Nitric oxide conveys a variety of messages between cells, including signals for vasorelaxation, neurotransmission and cytotoxici...
متن کاملEXPRESSION OF INDUCIBLE NITRIC OXIDE SYNTHASE GENE (iNOS) STIMULATED BY HYDROGEN PEROXIDE IN HUMAN ENDOTHELIAL CELLS
Inducible nitric oxide synthase (iNOS) gene expresses a calcium calmudolin-independent enzyme which can catalyse NO production from L-arginine. The induction of iNOS activity has been demonstrated in a wide variety of cell types under stimulation with cytokines and lipopoly saccharide (LPS). Previous studies indicated that all nitric oxide synthases (NOS) activated in human umbilical vein endot...
متن کاملRole of matrix metalloproteinase II on analgesic effect of nitric oxide inhibition in rat
Abstract Introduction: Matrix metalloproteinase 2 is one of the inflammatory mediators that is involved in nociceptive processing and its production is regulated by many inflammatory factors such as nitric oxide. We studied the role of MMP-2 on the analgesic effects of nNOS inhibitor. Methods: Considering that nitric oxide has many roles in pain processing, we studied the CSF levels of MMP-2 ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 284 29 شماره
صفحات -
تاریخ انتشار 2009